USER MANUAL NUPOWERTM C10R01 C-BAND POWER AMPLIFIER

PART NUMBER: NW-PA-C-10-R01

NuWaves RF Solutions 132 Edison Drive Middletown, Ohio 45044

PH: 513-360-0800 FAX: 513-539-8782 www.nuwaves.com sales@nuwaves.com

1 NUPOWER[™] PRODUCT LINE OVERVIEW

The NuPower family of solid-state RF power amplifier (PA) modules is designed to meet the demanding needs of the Aerospace & Defense, Industrial, and Commercial markets. Based on the latest gallium nitride (GaN) technology, NuPower's power efficiency and miniature form factor make it ideal for size, weight, and power-constrained broadband RF telemetry and tactical communications systems.

1.1 NUPOWER™ PRODUCT LINE HIGHLIGHTS

- <u>High Performance</u>: Unique combination of broadband coverage, miniature form factors, and high efficiency.
- <u>Enclosures:</u> The NuPower family of power amplifiers is housed in a silver nickel plated aluminum enclosure with mounting holes incorporated into the chassis.
- <u>Completely Characterized:</u> The NuPower family of solid-state power amplifiers has been completely characterized over temperature, voltage, and frequency. These high-performance modules offer significant value for the OEM user or the Systems Integrator.
- <u>User Friendly:</u> Over-Voltage protection and regulator thermal shutdown provide defenses against user interface issues.
- High Reliability: NuWaves' selection of conservatively rated components provides high reliability.
 Each NuPower amplifier is inspected to IPC-A-610 Class II quality standards. NuWaves' Quality
 Management System is AS9100:2016 Rev D and ISO 9001:2015 certified.
- <u>Applications</u>: Broadband RF Telemetry RF Communication Systems Electronic Warfare •
 Unmanned Aircraft Systems (UAS) Unmanned Ground Vehicles (UGV) Unmanned Surface
 Vehicles (USV) Software Defined Radios Test Labs
- Available Options:
 - o Fan-cooled heat sink with 28V operated fan
 - Labeled interface cable with banana jack plugs

2 NUPOWER[™] C10R01 PA OVERVIEW

The NuPower[™] C10R01 PA is a highly efficient, solid state power amplifier that provides over 8 watts (18 Watts typ) of RF power across 5100 MHz – 5900 MHz.

Based on the latest gallium nitride (GaN) technology, NuPower L-Band power efficiency and < 5 in³ cubic inch form factor make it ideal for size, weight, and power-constrained broadband RF telemetry and tactical communication systems.

The NuPower[™] C10R01 ruggedized chassis allows the system integrator to easily incorporate the unit into a platform operating in harsh environments with limited space, such as small Unmanned Aircraft Systems (UAS).

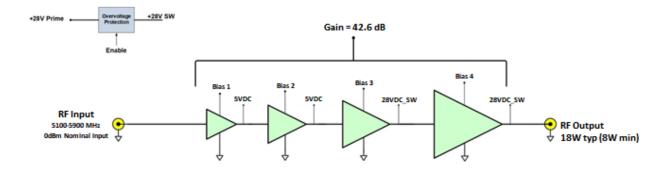


Figure 1: NuPower C10R01 Functional Block Diagram

2.1 NUPOWER C10R01 PA SPECIFICATIONS

The subsequent tables in this section outline the NuPower C10R01's performance specifications.

Table 1: NuPower C10R01 Electrical Specifications

Parameter	Specification	
Frequency Range	5100 MHz to 5900 MHz	
RF Output Power	8 Watts (min) / 18 Watts (typ)	
Output Power @ 1 dB Compression / 3dB Compression	25 dBm / 35dBm @ 5100 MHz	
	30 dBm / 40 dBm @ 5500 MHz	
	25 dBm / 37 dBm @ 5900 MHz	
Small Signal Gain / Large Signal Gain	50dB (typ) / 42.6dB (typ)	
Input VSWR	1.9 (typ)	
Output Mismatch (No Damage)	10:1	
Nominal Input Drive Level	0 dBm	
Maximum Input Drive Level (No damage)	+12 dBm	
	2 nd : -43 dBc (typ)	
Harmonic	3 rd : -46 dBc (typ)	
Third Order Intercept Point (Two tone test at 1 MHz spacing, Pout = 20 dBm / tone)	38 dBm @ 5100 MHz	
Switching Speed	0.4μs (typ) / 2 μs (max)	
Operating Voltage	+27 to +32 VDC	
Operating Current	2.1 A @ +28 VDC (typ)	
Module Efficiency	32%	
Power Amplifier Enable	RF Enable Grounded	
Impedance	50 Ω	

Table 2: NuPower C10R01 Environmental Specifications

Operating Conditions	Specification
Operating Temperature	-40 to +60 °C (ambient) -40 to +85 °C (baseplate)
Storage Temperature	-60 to +100 °C

2.2 NUPOWER C10R01 PA MECHANICAL SPECIFICATIONS

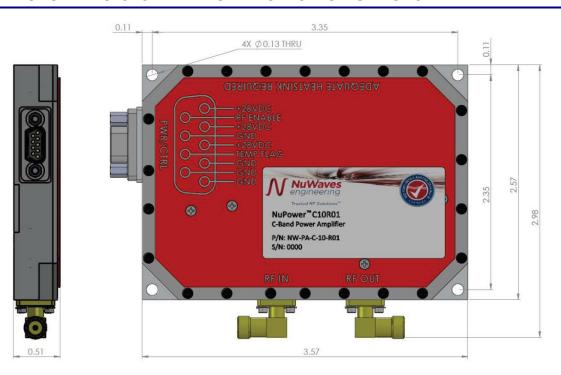


Figure 2: NuPower C10R01 Mechanical Outline

Table 3: NuPower C10R01 Mechanical Specifications

Parameter	Specification
RF Connectors	SMA (female)
Control / Power Interface Connector	9 Pin Micro-D (socket)
Dimensions (L x W x H)	3.57" x 2.57" x 0.51"
Weight	5 oz.

2.3 **HEAT SINKING**

The NuPower C10R01 is offered as a stand-alone module or with an accessory kit which includes a 28 VDC fan-cooled heatsink and requisite power cable.

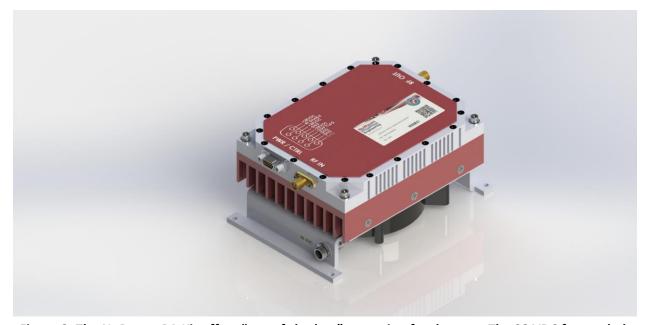


Figure 3: The NuPower PA Kit offers "out-of-the-box" operation for the user. The 28 VDC fan-cooled heatsink is shown with the NuPower C20R01 mounted (the C10R01 is not pictured in this image).

Caution: The use of external heat-sinking is required especially for those applications requiring high duty cycle operation (e.g. continuous wave) or for extended on-time testing. Operation without a proper heat sink under these conditions will cause permanent damage to the product and will void the product warranty.

The max operating temperature is 85° C (baseplate).

3 SETUP AND OPERATION

This section provides specific details for proper operation of the NuPower C10R01 module. Following these guidelines will prevent damage to the power amplifier or external equipment.

3.1 **POWER SUPPLY REQUIREMENTS**

To operate the NuPower C10R01, ensure that the power supply has adequate overhead to source the current demand of the RF power amplifier. The power supply source must provide a typical voltage of +28 VDC with greater than 3 amps capability.

3.2 CONNECTING A PROPER LOAD TO THE ANTENNA TERMINAL

To prevent damage to the PA, the antenna terminal must be terminated into a 50 Ω load. Examples of a proper load include:

- Directly connecting to an antenna specified for the frequency range (5100 MHz to 5900 MHz). Connecting to an inappropriate antenna may result in damage to the PA module.
- Connecting to a proper antenna through a 50 Ω transmission line or coaxial cable. Avoid using damaged cables or corroded connectors while attaching the unit to an antenna.
- Terminating the antenna terminal into a 50 Ω power attenuator with minimum 20 dB attenuation.
- Connecting to a load capable of dissipating the RF power from the PA module. Loads capable of handling 50 Watts (min) are recommended.

3.3 POWERING-UP THE NUPOWER C10R01

The NuPower C10R01 must be terminated to a proper load before power is applied. Refer to Section 3.2 for the specifications of the proper load. After the PA is properly terminated, the interface cable can be connected to the unit and power can be applied. The PA is now ready for operation.

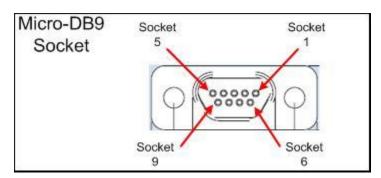
3.4 TRANSMIT TURN-ON TIME

Caution: Do not apply transmit data until the PA module is at full power. This will prevent loss of data at the beginning of a message.

The NuPower C10R01 is at full power approximately 0.4 μS after the RF Enable line goes low (ground).

4 HARDWARE INTERFACE

- The RF Input connector is SMA (female).
- The RF Output connector is SMA (female).
- The pin-out definitions for the 9 pin Micro-D socket connector are provided in Table 4. In a typical installation, the PA module is mated to a host controller board via a cable harness.


The RF Out SMA connector is the antenna connection. This connection should always be loaded into 50 Ω , otherwise the PA could be damaged.

4.1 INTERFACE CABLE HARNESS

The cable harness that connects the host controller to the 9 pin Micro-D connector of the NuPower C10R01 is made up of 9 wires.

Pin No.	Pin Name	1/0	Description
3, 4, 5	V Supply	I	Primary Power (+28 VDC)
1, 2, 6, 8	GND	I	Signal and Power Ground
7	Temp Flag	0	Over-temp Indicator 0V = temperature fault +5V = no fault
9	RF Enable	I	Transmit Control OV or GND = RF On +5V or NC = RF Off

Table 4: NuPower C10R01 Interface Pin-Out Definitions

Figure 4: Micro-D Socket Locations

4.2 **DC POWER**

The nominal supply voltage for the NuPower C10R01 is +28 VDC; The acceptable supply voltage range is +27 to +32 VDC.

4.3 **GROUND**

The signal and power grounds are tied together in the PA module.

4.4 **RF ENABLE**

This signal is the logic control input that designates whether the unit is in transmit or standby mode. The RF Enable line is pulled high internally placing the PA module in *standby* mode. If the pin is left floating (i.e. not connected), the unit will default to *standby* mode.

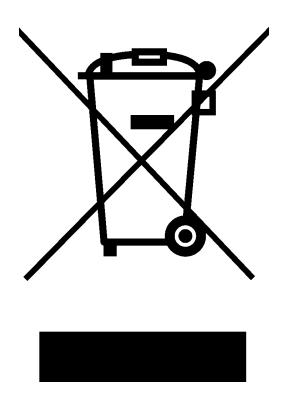
Grounding the pin (i.e. a voltage below +0.2 VDC) places the unit in *transmit* mode. The user can either connect the RF Enable line to pins, 1, 2, 6 & 8 on the CTRL/PWR interface connector, or an open drain logic line capable of sinking $500 \,\mu\text{A}$ to place the unit in *transmit* mode.

4.5 **POWER BACK OFF**

The C10R01 includes a temperature backoff feature, where a PWM signal is activated at approximately 70°C baseplate to modulate the amplifier drains and reduce output power, keeping the communications link, while reducing chassis temperature. If temperature exceeds 85°C, the module will shut down until chassis temperature falls below approximately 70°C.

4.6 **TEMP FLAG**

This signal is an output to indicate an over-temperature condition in the NuPower C10R01. A logic high (+5 VDC) indicates normal operation, while a logic low (0 VDC) indicates an over-temperature condition. The NuPower C10R01 incorporates internal logic circuitry that turns off the DC bias to the RF transistors.


Caution: The amplifier should be shut down and allowed to cool off when the over-temperature flag is set low to avoid damage to the module.

5 PRODUCT DISPOSAL – END-OF-LIFE

Safety is a guiding principle of NuWaves RF Solutions. We ensure safe production and operation of our products, as well as end-of-life disposal. Improper disposal can adversely affect the environment, wildlife and human health. Please follow these guidelines when disposing of a NuWaves product:

- Do not remove the cover or any hardware
- Do not remove components from the circuit card assembly
- Do not incinerate
- Do not crush or shred
- Do not dispose of as unsorted municipal waste
- Do not export e-waste outside of the original destination country for recycling
- Utilize an e-Steward or ISO14001 certified e-waste recycler
- Consider export controls during recycler selection
- If a NuWaves product is incorporated into a larger system or sub-system, ensure that these guidelines are followed at system end-of-life

6 GETTING HELP - APPLICATIONS ENGINEERING

NuWaves RF Solutions offers technical support for basic configuration help and troubleshooting, Monday through Friday, 8 a.m. to 5 p.m. Eastern Time.

Technical Assistance, Application Engineering and Sales:

Phone: (513) 360-0800

Email: support@nuwaves.com

NuWaves Home Page: https://www.nuwaves.com/

Product Warranty:

https://nuwaves.com/wp-content/uploads/NuWaves Warranty Repair-1.pdf

6.1 **GENERAL INFORMATION**

Copyright © 2006 - 2022 NuWaves Ltd. All rights reserved. The information contained in this user manual is copyright protected. NuWaves reserves the right to make periodic modifications and product improvements to the NuPower product line and the associated documentation.