

NuPower Xtender™ S-50-C01-S01

50 Watt CW 2.2 GHz - 2.5 GHz

P/N: NW-BA-S-50-C01-S01

Contact sales@nuwaves.com for custom options, including 2x2, 3x3, or 4x4 options in a single housing

The NuPower Xtender™ S-50-C01-S01 is a 50W single channel bi-directional amplifier ideal for extending the range of communications and datalinks for ISR applications. This is a standalone amplifier that supports NxN MIMO radios, where 2x2, 3x3, or 4x4 configurations are used for high data rate applications. This amplifier combines a power amplifier, LNA, and switch, in an integrated microwave assembly for a low SWaP solution to pair with MIMO radios.

Based on highly linear LDMOS technology, this amplifier is perfect for applications requiring both high data rates and high RF output power for long distance data links. It supports complex modulations with high peak-to-average ratios (PARs), where minimal signal distortion is required. Constant envelope signals such as CW, AM, and FM are also supported.

At a nominal +30dBm (1Watt) RF input, the amplifier provides 17dB of gain to achieve a nominal 50 Watts at each of the antenna ports. Each channel is its own independent bi-directional amplifier. The amplifier switches between transmit and receive through a DC control input. Alternatively, the module can be configured for Autosense where it switches between transmit and receive automatically based on the RF input power detected at the XCVR Port.

Extend your operational communication range with NuPower™ amplifiers from **NuWaves RF Solutions.**

Features

- 50 Watts (typ) RF Output Power
- 2.2 to 2.5 GHz
- Bidirectional Operation
- 17 dB (typ) of Transmit Gain
- 12 dB (typ) Receive Gain
- Fast T/R Mode Switching with Auto-Sensing or Manual T/R Line
- Small Form Factor
- Highly Linear LDMOS Technology
- Over-Voltage & Reverse-Voltage Protection

Applications

- Unmanned Aircraft Systems (UAS) -Group 2 and Group 3
- Unmanned Ground Vehicles (UGV)
- Software Defined Radios
- Air Launch Effect (ALE)
- Counter UAS Detection and Mitigation
- MIMO/MANET Radio Range Extension
- SISO Radio Range Extension

Specifications

Absolute Maximums

Parameter	Rating	Unit
Max Device Voltage	N/A	V
Max Device Current	TBD	А
Max RF Input Power CW, Z_L =50 Ω	TBD	dBm
	TBD	
Max Operating Temperature (ambient)	+71 °C	°C
Max Operating Temperature (baseplate)	+85 °C	°C
Max Storage Temperature	+85 °C	°C

Export Classification
EAR 99

Electrical Specifications - Operational @ 28 VDC, 25 °C, Z_S=Z_L=50 Ω, CW, Pin = +30 dBm (unless otherwise specified)

Parameter	Symbol	Min	Тур	Max	Unit	Condition
RF Output Power, Psat	Psat		47		dBm	
Operating Frequency	BW	2200		2500	MHz	
Switching Speed	TX _{ON/OFF}		1.0	2.0	μs	
Operating Voltage	VDC		28		V	
Operating Current (Transmit)	I _{DD}		TBR		A	
Module Efficiency (Transmit)			TBD		%	

Electrical Specifications - Transmit @ 28 VDC, 25 °C, Z_S=Z_L=50 Ω, CW, Pin = +30 dBm (unless otherwise specified)

Parameter	Symbol	Min	Тур	Max	Unit	Condition
RF Output Power, Psat	Psat		47		W	
Tx Gain	G		17		dB	
Power Gain Flatness	ΔG		±1.0		dB	1-2.5 GHz
Small Signal Gain Flatness	ΔG		TBD		dB	Pin= 0 dBm, 1-2.5 GHz
Harmonics	2nd		TBD		dBc	
Nominal Input Drive Level	Pin		+30		dBm	
Quescent Current	I _{DQ}		TBD		mA	T/R Enable Off (Receive Current)
Tx Current	I _{TX}		TBD	6.5A	A	
Tx Input VSWR (XCVR Port)	VSWR		2:1			
Tx Output Mismatch VSWR	VSWR		10:1 (TBR)		Ψ	No damage at all phase angles

Electrical Specifications - Receive @ 28 VDC, 25 °C, Z_S=Z_L=50 Ω, CW, -30 dBm Input Power (unless otherwise specified)

Parameter	Symbol	Min	Тур	Max	Unit	Condition
RF Gain	G		12.0		dB	
Rx P1dB	P1dB		7.0		dBm	
Rx Gain Flatness	ΔG		±1.0		dB	
Rx Current	I _{RX}		TBD		mA	
Rx Noise Figure	NF		2.5		dB	
RX Input VSWR (ANT Port)	VSWR		2:1			

Specifications (cont.)

Mechanical Specifications

Parameter	Value	Unit	Limits
Dimensions	4.0x 3.5 x 1.0	in	Max
Weight	TBD	OZ.	Max
RF Connectors, Input/Output	SMA		
Interface Connector	9-Pin Micro D		
Cooling	Adequate Heatsink Required		

Environmental Specifications

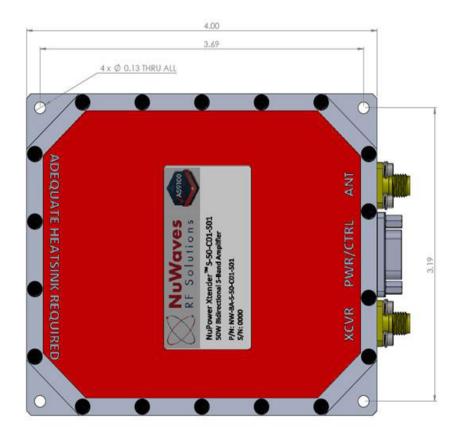
Parameter	Symbol	Min	Тур	Max	Unit
Operating Temperature (ambient)	T _A	-40		+71	°C
Operating Temperature (baseplate)	Tc	-40		+85	°C
Storage Temperature	T _{STG}	-55		+85	°C
Altitude	ALT		TBD	50,000	ft
Vibration / Shock Profile TBD			(Profile TBD)		

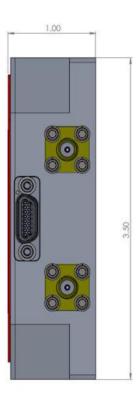
EVM vs Output Power vs Modulation

Modulation (802.11g, 20MHz BW, OFDM)	Date Rate	Output Power (W)	EVM (dB)	EVM (%)
64QAM	54 MBPS	10	≤ -27	≤ 4.46
16QAM	36 MBPS	20	≤ -21	≤ 8.91
QPSK	12 MBPS	35	≤ -15	≤ 17.78
BPSK	9 MBPS	50	≤ -7	≤ 44.66

Transmit Performance (to be provided soon) Test Conditions: +28 VDC, +25 °C, $Z_s=Z_L=50$ Ω , CW, +30 dBm Input Power (unless otherwise specified) **Output Power** Output Power - Stepped Input Power Output Power vs. Input Power Output Power vs. Input Voltage **Current Consumption** Transmit Small Signal Gain [0dBm Input Power] Efficiency Efficiency vs. Output Power

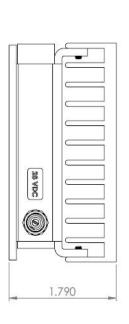
Transmit Performance Plots (cont.)

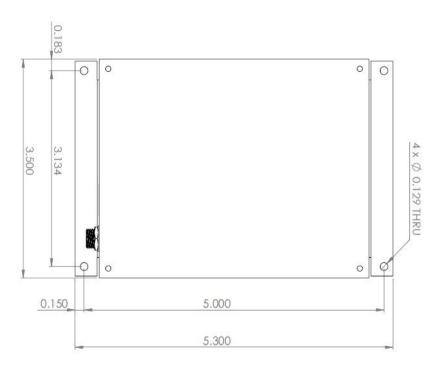

Test Conditions: +28 VDC, +25 °C, $Z_S = Z_L = 50$ Ω , CW, +30 dBm Input Power (unless otherwise specified)


Transmit Input VSWR	Harmonics		
Transmit P1dB	EVM vs. Output Power [BPSK (OFDM)]		
EVM vs. Output Power [QPSK (OFDM)]	EVM vs. Output Power [16QAM (OFDM)]		
EVM vs. Output Power [QPSK (OFDM)]	EVM vs. Output Power [16QAM (OFDM)]		
EVM vs. Output Power [QPSK (OFDM)]	EVM vs. Output Power [16QAM (OFDM)]		
EVM vs. Output Power [QPSK (OFDM)]	EVM vs. Output Power [16QAM (OFDM)]		
EVM vs. Output Power [QPSK (OFDM)]	EVM vs. Output Power [16QAM (OFDM)]		
EVM vs. Output Power [QPSK (OFDM)]	EVM vs. Output Power [16QAM (OFDM)]		
EVM vs. Output Power [QPSK (OFDM)]	EVM vs. Output Power [16QAM (OFDM)]		
EVM vs. Output Power [QPSK (OFDM)]	EVM vs. Output Power [16QAM (OFDM)]		
EVM vs. Output Power [QPSK (OFDM)]	EVM vs. Output Power [16QAM (OFDM)]		
EVM vs. Output Power [QPSK (OFDM)] EVM vs. Output Power [64QAM (OFDM)]	EVM vs. Output Power [16QAM (OFDM)]		
	EVM vs. Output Power [16QAM (OFDM)]		
	EVM vs. Output Power [16QAM (OFDM)]		
	EVM vs. Output Power [16QAM (OFDM)]		
	EVM vs. Output Power [16QAM (OFDM)]		
	EVM vs. Output Power [16QAM (OFDM)]		
	EVM vs. Output Power [16QAM (OFDM)]		

Receive Performance Plots (to be provided soon) Test Conditions: +28 VDC, +25 °C, $Z_s=Z_L=50$ Ω , CW, -30 dBm Input Power (unless otherwise specified)

Receive Gain	Receive Gain vs Temperature
Receive P1dB	Receive Noise Figure
Receive Noise Figure vs Temperature	Receive Input VSWR


Mechanical Outline



Optional Heatsink

Heatsink with Integrated Fan: HTSK-02

Accessory Part Numbers - Sold Separately

Part Number	Description
NW-FL-05LPLE-2500- SFSF-M01	Harmonic Filter Module
TBD	Standard Interface Cable Assembly – Flying Leads
TBD	Upgraded Interface Cable Assembly – Banana Plug Termination (Optional)
HTSK-02	Heatsink with Fan Assembly (Optional)

For information on product disposal (end-of-life), please refer to this document: https://nuwayes.com/wp-content/uploads/Product-Disposal-End-of-Life.pdf

Pinout

Function	I/O	Pin	Logic Voltage
DC Power (Primary Power, +11 to +32 Volts)	Ι	TBD	-
Ground (DC Return)	Ι	TBD	-
Over Temperature Flag	ļ	TBD	-
T/R Enable			TBD
T/R Mode: Source (Autosense) ¹ T/R Mode: Sink (Manual T/R) [High TX / Low RX]	1/0	TBD	TBD

¹Autosense automatically switches to transmit and receive based on input signal strength. Typical threshold is TBD; see user manual for complete information.

Contact NuWaves

NuWaves RF Solutions 132 Edison Drive Middletown, OH 45044

www.nuwaves.com sales@nuwaves.com 513.360.0800

