NuWaves RF Solutions

NuPower"m LS5MI01-D30

Micro L- \& S-Band Solid State Power Amplifier

5 Watt CW
$1.0 \mathrm{GHz}-2.5 \mathrm{GHz}$
P/N: NW-PA-LS-5-MI01-D30

Abstract

The NuPower ${ }^{\text {TM }}$ LS5MI01-D30 Micro L- \& S-Band Power Amplifier offers the smallest form factor of the NuPower family of PAs at $1.62 \mathrm{in}^{3}$. This highly efficient solid state power amplifier provides over 5 watts of RF power across both L and S frequency bands.

Based on the latest gallium nitride (GaN) technology, the NuPower's power efficiency and miniature form factor make it ideal for size, weight, and power-constrained broadband RF telemetry and tactical communication systems. The NuPower LS5MI01 Power Amplifier takes low SWaP to a new level, allowing it to be integrated into some of the smallest aerial platforms flying today.

The NuPower LS5MI01-D30 PA is also available with the standard $0 \mathrm{dBm}(1 \mathrm{~mW})$ input drive level (P/N: NW-PA-LS-5-MI01), for typical communication systems.

Extend your operational communication range with NuPower $^{\text {TM }}$ amplifiers from

 NuWaves RF Solutions.
Features

- 5 Watts RF Output Power
- 1.0 GHz to 2.5 GHz
- Miniature Package ($\left.1.80^{\prime \prime} \times 1.80^{\prime \prime} \times 0.50^{\prime \prime}\right)$
- High-Efficiency GaN Technology
- Transmit/Standby Mode
- Single Power Supply
- Over-Voltage Protection
- Reverse-Voltage Protection
- Logic On/Off Control

Benefits

- Extended Range
- Improved Link Margin
- Lessened load on DC power budget due to high efficiency operation
- Consumes less volume on space-constrained platforms

Applications

- Unmanned Aircraft Systems (UAS), Group 1 \& 2
- Unmanned Ground Vehicles (UGV)
- Broadband RF Telemetry
- RF Communication Systems
- Software Defined Radios
- Test Labs

NuPower ${ }^{\text {TM }}$ LS5MI01-D30 Power Amplifier

Specifications

Absolute Maximums

Parameter	Rating	Unit
Max Device Voltage	32	V
Max Device Current	2.4	A
Max RF Input Power, $Z_{L}=50 \Omega$	33	dBm
Max Operating Temperature (ambient)	60	${ }^{\circ} \mathrm{C}$
Max Operating Temperature (baseplate)	85	${ }^{\circ} \mathrm{C}$
Max Storage Temperature	85	${ }^{\circ} \mathrm{C}$

Export Classification

Electrical Specifications @ $28 \mathrm{VDC}, 25^{\circ} \mathrm{C}, \mathrm{Z}_{s}=\mathrm{Z}_{l}=50 \Omega$

Parameter	Symbol	Min	Typ	Max	Unit	Condition
Operating Frequency	BW	1.0		2.5	GHz	
RF Output Power	$\mathrm{P}_{\text {SAI }}$	5	7		W	Pin $=0 \mathrm{dBm}$
Output Power @ 1dB Compression	P1dB				dBm	
Small Signal Gain	G		7		dB	Pin $=-30 \mathrm{dBm}$
Small Signal Gain Flatness	ΔG		± 3		dB	Pin $=-30 \mathrm{dBm}$
Power Gain Flatness			± 1		dB	$\mathrm{Pin}=0 \mathrm{dBm}$
InputVSWR	VSWR		1.8	3.5		
Nominal Input Drive Level	$\mathrm{P}_{\text {w }}$		+30	+33	dBm	
Operating Voltage	VDC	26	28	30	V	
Quiescent Current	loo		0.35		A	Bias enabled
Operating Current	100		0.85	1.25	A	$\mathrm{Pin}=0 \mathrm{dBm}$
Modul Efficiency			30		\%	
Third Order Order Intercept Point (Two tone test at 1 MHz spacing, Pout $=20 \mathrm{dBm} /$ tone)	O\|P3				dBm	
Harmonics	2nd		-13		dBC	
Output Mismatch (No Damage)				10:1		No damage at all phase angles

NuPower ${ }^{\text {TM }}$ LS5MI01-D30 Power Amplifier

Specifications (cont.)
Mechanical Specifications

Parameter	Value	Unit	Limits
Dimensions	$1.80 \times 1.80 \times 0.50$	in	Max
Weight	1.3	$0 z$	Max
RF Connectors, Input/Output	SSMC Female		
Interface Connector	Micro-D, 9-pin Socket		
Cooling	Adequate Heatsink Required		

Environmental Specifications

Parameter	Symbol	Min	Typ	Max	Unit
Operating Temperature (ambient)	T_{A}	-30		+60	${ }^{\circ} \mathrm{C}$
Operating Temperature (baseplate)	Tc	-30		+85	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tsti	-40		+85	${ }^{\circ} \mathrm{C}$
Relative Humidity (non-condensing)	RH			95	\%
Altitude $\text { MIL-STD-810F - Method } 500.4$	ALT			30,000	ft
Vibration / Shock Profile (Random profile in x, y, z axis, as per Figure for 15 minute duration in each axis)				$\begin{aligned} & \left.\right\|_{350} \\ & , \mathrm{~Hz} \end{aligned}$	$\left.\right\|_{2000} ^{x_{2} z_{e}}$

NuPower ${ }^{\text {TM }}$ LS5MI01-D30 Power Amplifier

Mechanical Outline

Accessory Part Numbers - Sold Separately Pinout

Part Number	Description
NW-FL-05LPLE-2500-SFSF-M01	Harmonic Filter Module
NW-PA-ACC-CB09MF	Standard Interface Cable Assembly - Flying Leads
NW-PA-ACC-CT09MF	Upgraded Interface Cable Assembly - Banana Plug Termination
HTSK-01	Heatsink with Integrated Fan

Function	I/O	Pin
Ground	।	1,2
DC Power (+28 VDC)	।	3,4
RF Enable OV or GND $=$ RF ON +5 V or NC $=$ RF OFF	।	5
No Connect	-	$6,7 \& 9$
Over Temperature Flag OV $=$ temperature fault $+5 \mathrm{~V}=$ no fault	0	8

Contact NuWaves

NuWaves RF Solutions
132 Edison Drive
Middletown, OH 45044
www.nuwaves.com
sales@nuwaves.com
513.360.0800

NuWaves
RF Solutions

