NuWaves engineering

Trusted RF Solutions[™]

HILNA HF AGC

Low Noise Amplifier

2 - 50 MHz 30 dB Gain

P/N: HILNA-HF-AGC
HILNA-HF-AGC-M/F (with mounting flanges)

[Includes NW-LN-ACC-CB09MD interface cable]

NuWaves' HILNA HF AGC is a broadband low noise amplifier, featuring Automatic Gain Control (AGC), designed to achieve high gain while maintaining low noise and a high third-order intercept point in the High Frequency (HF) bands.

This high-performance module delivers 30 dB of gain across the entire broad range of 2 to 50 MHz with an OIP3 of +30 dBm and a P1dB of +18 dBm. This HILNATM model is also available without Automatic Gain Control (AGC); see the HILNA HF for details.

The HILNA HF's robust power supply also operates over a very broad range, easily allowing the unit to be integrated into systems without regard to power supply precision.

Features

- 2 to 50 MHz
- Broadband Operation
- Low Noise and High Gain
- · High Intercept Point
- Programmable AGC
- Rugged Chassis
- Over-Voltage Protection
- Reverse-Voltage Protection
- Wide Input Voltage Range
- Internal Regulator/Active Bias Devices for Stability

Benefits

- Low Level Signal Amplification
- Improved Link Margin
- Ruggedized Chassis for Harsh Environments

Applications

- Wideband RF Front Ends
- General Purpose Amplification
- High Performance Receivers
- Broadband High Gain Block
- Low Noise Transmit Driver
- RF Preamplifier
- RF Repeater
- Base Station LNA
- University Research and Instruction
- Multi-Signal Environment Amplifier

HILNA HF AGC Low Noise Amplifier

Specifications

Absolute Maximums

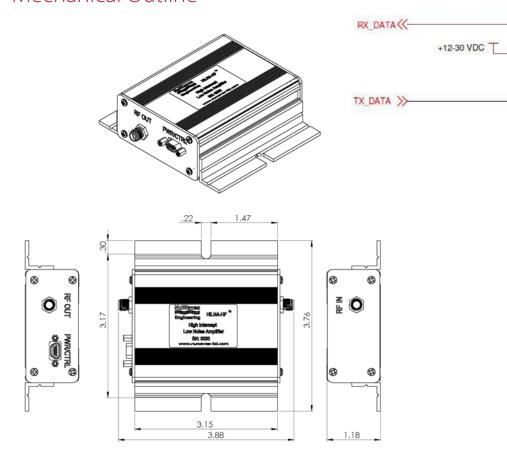
Parameter	Rating	Unit
Max Device Voltage	30	V
Max Device Current	300	mA
Max RF Input Power, $Z_L = 50 Ω$	12	dBm
Max Operating Temperature	70	°C
Max Storage Temperature	85	°C

Export Classification
EAR99

Electrical Specifications @ 12 VDC, 25 °C, Zς=Z₁=50 Ω

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Operating Frequency	BW	2		50	MHz	
RF Gain	G		30		dB	
Reverse Isolation			53		dB	
VCVVD	VCMD		1.5:1			Input
VSWR	VSWR		1.5:1			Output
Noise Figure	NF			5	dB	
Third Order Order Intercept Point	OIP3		+30		dBm	
Output Power @ 1dB Compression	P1dB		+18		dBm	
Operating Voltage	VDC	12	12	30	V	
Operating Current	I _{DD}		150	300	mA	@ 12 VDC (typ)

Mechanical Specifications


Parameter	Value	Unit	Limits
Dimensions	3.15 x 2.50 x 1.18	in	Max
Weight	5.0	OZ	Max
RF Bulkhead Connector	SMA Female		
RF Input and Output Mating Connector	SMA Male		
DC Power Connector	Micro-DB9		

Environmental Specifications

Symbol	Min	Тур	Max	Unit
Tc	-20		+60	°(
T _{STG}	-40		+85	°C
RH			95	%
ALT			30,000	ft
Power Spectral Density, 8 ² /Hz Oogle 2/Hz Oogle 2/Hz			30	ibloctave
	20		350	2000
	Tc T _{STG} RH ALT	Tc -20 Ts16 -40 RH ALT	Tc -20 T _{STG} -40 RH ALT ALT 20 3 d8 loctale 20 80	Tc -20 +60 T _{STG} -40 +85 RH 95 ALT 30,000 TH/8 / Hz 30,000

HILNA HF AGC Low Noise Amplifier

Mechanical Outline

Accessory Part Numbers

Part Number	Description				
NW-LN-ACC-CB09MD	Standard Interface Cable Assembly – Flying Leads (included w/ module)				
NW-LN-ACC-CT09MD	Upgraded Interface Cable Assembly – Banana Plug Termination				

Pinout

Function	I/O	Pin
Transmit Data	0	1
Ground		2, 6, 7
No Connect	-	3, 4
Receive Data	I	5
DC Power (+12 to +30 VDC)	I	8,9

For information on product disposal (end-of-life), please refer to this document: https://nuwaves.com/wp-content/uploads/Product-Disposal-End-of-Life.pdf

Contact NuWaves

NuWaves Engineering 132 Edison Drive Middletown, OH 45044 www.nuwaves.com
product.sales@nuwaves.com
513.360.0800

Trusted RF Solutions[™]

Micro-D DB9